• Talk Contributors

- Dusty Wheatley (CIMMS)
- Nusrat Yussouf (CIMMS)
- Dan Dawson (NRC Post-Doc)
- Jidong Gao (Fed)
- Ted Mansell (Fed)
- Thomas Jones (CIMMS)

• 2010 Deliverables

- Completion of VORTEX2 field phase data collection activities.
- Quality controlled and supplemental data sets for 5 June 2009 VORTEX2 case
- Summary report for automated radar QC
- Report on the CAPS real-time 3DVAR with assessment of system by forecasters and archive of results.
- New federal scientist hired to assist in data assimilation activities.
- Warn-on-forecast webpage completed and online.
- Other deliverables to be discussed elsewhere

• 2010 Deliverables

- Completion of VORTEX2 field phase data collection activities.
- Quality controlled and supplemental data sets for 5 June 2009 VORTEX2 case
- Summary report for automated radar QC
- Report on the CAPS real-time 3DVAR with assessment of system by forecasters and archive of results.
- New federal scientist hired to assist in data assimilation activities.
- Warn-on-forecast webpage completed and online.
- Other deliverables to be discussed elsewhere

• 2010 Deliverables

- Completion of VORTEX2 field phase data collection activities.
- Quality controlled and supplemental data sets for 5 June 2009 VORTEX2 case
- Summary report for automated radar QC
- Report on the CAPS real-time 3DVAR with assessment of system by forecasters and archive of results.
- New federal scientist hired to assist in data assimilation activities.
- Warn-on-forecast webpage completed and online.
- Other deliverables to be discussed elsewhere

• 2010 Deliverables

- Completion of VORTEX2 field phase data collection activities.
- Quality controlled and supplemental data sets for 5 June 2009 VORTEX2 case
- Summary report for automated radar QC
- Report on the CAPS real-time 3DVAR with assessment of system by forecasters and archive of results.
- New federal scientist hired to assist in data assimilation activities.
- Warn-on-forecast webpage completed and online.
- Other deliverables to be discussed elsewhere

VORTEX2 2009 & 2010

WoF VORTEX-2 Participants

Mansell, Wicker, Knopfmeier, Thompson, Sobash, Manross, Potvin, Dawson

- 82 Field Days
- >35,000 miles driven
- ~15 Tornadic Supercells
- ~18 Supercell Tornadoes
- ~29 Nontornadic Supercells
- ~7 QLCSs
- ~2 QLCS Tornadoes
- 10-15 TB of data?
- All in situ data has to be QC'd
- Radar data (>20,000 PPIs?)
 - orientation of radar to < 0.2 deg
 - clutter filtering
 - dealiasing of radial velocity, attenuation correction

Our Two Approaches

Top Down

- mesoscale ensembles creating analyses at lower resolution (~20 km)
- use multi-sensor data (surface, satellite, acars...)
- useful for 0-6 hour severe weather threat assessment
- then used to provide IC/BCs for high-res storm-scale

Bottom Up

- storm-scale modeling to develop and test algorithms for radar data assimilation (~ 1 km).
- focused on optimal use of radar data
- used to reduce impact of model error on DA
- homogeneous experiments are then scaled up to full multiscale

COSMO/CLM User Seminar March 1 2011

WRF Mesoscale Ensemble DA System (D. Wheatley & N. Yussouf)

- WRF (ARW)
 - Eastern two-thirds of CONUS
 - 20-km horizontal grid spacing; 51 vertical levels
 - Mean initial and boundary conditions from the NAM forecast cycle starting at 1200 UTC
- 36-member ensemble
 - IC/BC perturbations for WRF-Var
 - Physics diversity
- Data Assimilation Research Testbed (DART)
 - Ensemble Kalman filter (EnKF) approach
 - p (land-surface altimeter), T, T_d, u, v
 - Land and marine surface stations
 - Radiosonde
 - Automated aircraft

Satellite Data Assimilation

(T. Jones)

- GOAL: Use satellite data to improve short term meso-scale and storm-scale WRF forecasts
- Satellite Data Examples:
 - Temperature and humidity profiles
 - Cloud microphysical properties
 - Microwave, infrared, and visible spectrum radiances / reflectance
- Assimilate AIRS temperature and humidity profiles into WRF-DART
 - AQUA polar orbiting satellite: two overpasses per day
 - Provides temperature and humidity retrievals at mandatory pressure levels at a ~45 km horizontal resolution

- Sampling location changes each day as a function of orbit and cloud conditions
- The more clouds, the greater uncertainty in retrievals

Future Work: Satellite

- Run nested grid (Dx = 3 km) to determine effect of AIRS data on forecasting significant events.
- Repeat current analysis with new high-resolution (15 km) AIRS product produced by CIMSS in Wisconsin
- Longer term, move on to direct assimilation of visible reflectances from GOES.
 - Improve analysis of cloud characteristics within model
 - Primary goal of improving convective initiation forecasts
 - Summer 2011 onward

Storm-scale DA

- Focused on real data cases
- Storm-scale 3DVAR real-time analyses
 - showing analyses to OUN forecasters
- Research mode: technique development
 - Greensburg KS 2007 (F5 tornadic storm)
 - Moore OK 2003 (F4 tornadic storm)
 - Lagrange WY 2009 (VORTEX2 case)
- Other synergistic activities
 - Use of 2 & 3 moment microphysics
 - Impact from PAR data
 - Assimilation resolution studies

Storm-scale 3DVar Development & Applications (J. Gao)

- Real-time analysis: Demonstrated near real-time, weather-adaptive and users on-demand 3DVAR analysis at 1 km resolution – ingesting mainly WSR-88D data (Stensrud et al. 2010).
- Reflectivity Data Assimilation: Finished some preliminary tests directly assimilating reflectivity data with a unified 3DVAR framework.
- Preliminary Hybrid 3DVAR-EnKF development: with idealized dataset (in collaboration with CAPS).

Assimilating reflectivity within a variational framework

- First method (1)
 - total reflectivity computed as (Smith 1975);

$$Z_{e} = Z_{er}(q_{r}) + Z_{es}(q_{s}) + Z_{eh}(q_{h}),$$
(1)

- Second method (2)
 - partition reflectivity via temperature
 - T > +5 C: all rain
 - T < 5 C: all snow and hail
 - 5 C > T > -5 C: mixed phase
 - linearly partition reflectivities between rain and snow/hail

$$Z_{e} = \begin{cases} Z_{er}(q_{r}) & T_{b} > 5^{\circ} C \\ Z_{es}(q_{s}) + Z_{eh}(q_{h}) & T_{b} > -5^{\circ} C \\ \alpha Z_{er}(q_{r}) + (1 - \alpha) \left[Z_{es}(q) + Z_{eh}(q) \right] & -5^{\circ} C < T_{b} < 5^{\circ} C \\ \text{Warm on Forecast Workshop 23 Feb 2011} \end{cases}$$

Future Work

- Real-time storm-scale analysis:
 - Continue real-time, 3DVAR analysis at 1 km resolution
 - ingest surface Mesonet data in addition to other datasets.
- Real-time forecasts using 3DVAR Initialization:
 - 1440x1440 km domain over central/southern Plains (dx=3km)
 - Work with Norman NWS WFO 6 hour forecasts launched every 1 hour
 - Assimilate NEXRAD data and surface observations (including mesonet data)
- Thermodynamic constraint & Reflectivity Data Assimilation:
 - Demonstrate impact of new constraints
- EnKF & 3DVAR:
 - Compare performance of 3DVAR and EnKF for storm-scale NWP.
 - Continuing Hybrid EnKF and 3DVAR work.

The WoF Vision WO-HSUCIMAS Warring Diction Support System Integrated Information CUI Projected low-level reflectivity at 1 hour from storm-scale NVP model Initial State None State N

Microphysical Parameterization Development

(T. Mansell, D. Dawson)

- Development of 3-moment microphysical scheme suitable for deep convection
- Testing of 3-moment scheme within EnKF framework
- Verification of microphysical parameterizations
 - using dual-polarization radar data
 - forward operator from Y. Jung and M. Xue
 - collaboration with CAPS

8 May 2003 @ Tornadogenesis Mean Vorticity near SFC 20 min. forecasts, valid 22:10 UTC (8 May 2003) Single Moment Ensemble Mean Vertical Vorticity TIME Ensemble Mean Verti

21.3 m s⁻¹

CONTOUR FROM -60 TO 60 BY 10

Impact from Assimilating Radar Data using EnKF within a Realistic Mesoscale Environment (N. Yussouf & D. Wheatley) • May 8, 2003 Oklahoma City tornadic supercell storm. • WRF model and DART EnKF data assimilation technique. • A 40 member storm-scale ensemble nested down from the mesoscale ensemble. • 240 x 240 km wide with 2-km horizontal grid spacing. • Physics: Grell-Devenyi, MYJ, Thompson, Dudhia, RRTM, Noah Assimilates KOUN radar radial velocity and reflectivity observations every 5-min for a one-hour period. 09z 10z 11z 22z Mesoscale hourly assimilation Storm-scale every 5 min assimilation

Lanuched a stormscale ensemble nested down to 2 km from a 20-km horizontal grid spacing mesoscale WRF/DART ensemble. Routinely available observations from metar, radiosonde, marine and ACARS observations are assimilated in the mesoscale ensemble on an hourly basis for a 12 h period, and this mesoscale ensemble is used to create the initial and boundary condition for the storm-scale ensemble. Assimilated KOUN reflectivity and radial velocity observations every five minutes for a one hour period. During the one hour assimilation period, 14 volume scans of radar observations are assimilated.

Figure: Hourly mesoscale assimilation starts at 09:00 UTC and ends at 21:00 UTC. Every 5 minutes storm-scale assimilation starts at 21:05 UTC and ends at 22:10 UTC.

On the left is the ensemble mean reflectivity analyses at 1 km above ground at the last assimilation cycle. On the right is the KOUN reflectivity observations at 1.5 elevation which is approx. at 1 km above ground. We do see the main storm formed in the ensemble and there is a good match between observed and analyses hook echo.

Horizontal cross-section of ensemble mean analyses of maximum updraft helicity ($m^2 s^{-2}$), maximum vertical velocity ($m s^{-1}$) and KOUN reflectivity (dBZ) at 22:05 UTC.

Future Work Meso/Conv Data Assimilation

- Collaboration with NCAR/GSD to test various cycling methods on June 2009 V2 cases (Wheatley)
- Beginning work on MCS cases (Wheatley and Sobash)
- EnKF version of Gao and Stensrud 8 May paper (Yussouf, Wheatley, Gao)
- Multi-microphysics EnKF analyses/forecasts for 5 June 2009 Goshen Co. V2 case (Yussouf)

Other Current/Future Work

- Impact from use of conservative thermodynamic variables to improve EnKF analyses
 (C. Potvin)
- LETKF applied to VORTEX2 data sets (T. Thompson)
- Sensitivity study to determine sensitivity of supercells storms to uncertainty in environments (B. Belobraydich)

Scientific Impacts & Outreach

- Formal publications from NSSL WoF group (2010)
 - 4 papers published or in press
 - 2 more papers submitted
- Conference/Workshop (2010)
 - 10 papers
- Other
 - WoF web page (http://www.nssl.noaa.gov/projects/wof/)
 - OPAWS objective analysis software (http://code.google.com/p/opaws/)

